Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38339222

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKp) is a variant that has been increasingly linked to severe, life-threatening infections including pyogenic liver abscess and bloodstream infections. HvKps belonging to the capsular serotypes K1 and K2 have been reported worldwide, however, very scarce studies are available on their genomics and virulence. In the current study, we report four hypermucoviscous extended-spectrum ß-lactamase-producing hvKp clinical strains of capsular serotype K1 and K2 isolated from pus and urine of critically ill patients in tertiary care hospitals in Oman. These strains belong to diverse sequence types (STs), namely ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2). To study their virulence, a Galleria mellonella model and resistance to human serum killing were used. The G. mellonella model revealed that the K1/ST-23 isolate was the most virulent, as 50% of the larvae died in the first day, followed by isolate K2/ST-231 and K2/ST-14, for which 75% and 50% of the larvae died in the second day, respectively. Resistance to human serum killing showed there was complete inhibition of bacterial growth of all four isolates by the end of the first hour and up to the third hour. Whole genome sequencing (WGS) revealed that hvKp strains display a unique genetic arrangement of k-loci. Whole-genome single-nucleotide polymorphism-based phylogenetic analysis revealed that these hvKp isolates were phylogenetically distinct, belonging to diverse clades, and belonged to different STs in comparison to global isolates. For ST-23(K1), ST-231(K2), ST-881(K2), and ST-14(K2), there was a gradual decrease in the number of colonies up to the second to third hour, which indicates neutralization of bacterial cells by the serum components. However, this was followed by a sudden increase of bacterial growth, indicating possible resistance of bacteria against human serum bactericidal activity. This is the first report from Oman detailing the WGS of hvKp clinical isolates and assessing their resistance and virulence genomics, which reinforce our understanding of their epidemiology and dissemination in clinical settings.


Subject(s)
Klebsiella pneumoniae , Virulence Factors , Humans , Serogroup , Phylogeny , Virulence/genetics , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
MethodsX ; 10: 102091, 2023.
Article in English | MEDLINE | ID: mdl-36937816

ABSTRACT

Genome-wide association studies are a powerful approach for identifying determinants of disease. For infectious diseases, high throughput assays are required for measuring the variance in multiple virulence-related phenotypes of large bacterial isolate collections and for association of this phenotypic variance with genotype. The primary limiting factors are cost, effectiveness and a standardized inoculum. A method was developed to create an inoculum array of multiple isolates that could be used for a series of high-throughput multi-isolate phenotypic investigations in a laboratory setting. A key starting point was the standardisation of the inoculum by production of identical batches of each isolate from cells grown to mid-log phase. Cultures with pre-determined optical densities were aliquoted in set patterns into multiple multi-well plates containing 50% glycerol and stored at -80 °C. Prior to a specific assay, an inoculum plate was defrosted and subjected to a brief period of incubation. Control strains can be placed on each plate in order to control for intra-assay variability. A high throughput screen is described in detail for quantification of biofilm formation. This example utilised the crystal violet staining method and multi-assay stock plates containing 16 meningococcal isolates.•Multi-assay stock plate of exponentially growing isolates is cost-effective and simple to implement in a laboratory setting.•This method would predict realistic standard deviations for multiple isolates in phenotypic assays and generate data for performance of power calculations for genotyping.•This method has the potential to identify both known and unknown genetic determinants of phenotypic variability for each tested isolate when paired with genetic analysis of whole genome sequencing data.

3.
mBio ; 13(6): e0265622, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36374090

ABSTRACT

The genetic diversity of Mycobacterium tuberculosis can influence disease severity and transmissibility. To better understand how this diversity influences individuals and communities, we phenotyped M. tuberculosis that was causing a persistent outbreak in the East Midlands, United Kingdom. Compared to nonoutbreak isolates, bacilli had higher lipid contents and more hydrophobic cell surfaces. In macrophage infection models, the bacteria increased more rapidly, provoked the enhanced accumulation of macrophage lipid droplets and enhanced the secretion of IL-1ß. Natural deletions in fadB4, nrdB, and plcC distinguished the outbreak isolates from other lineage 3 isolates in the region. fadB4 is annotated with a putative role in cell envelope biosynthesis, so the loss of this gene has the potential to alter the interactions of bacteria with immune cells. Reintroduction of fadB4 to the outbreak strain led to a phenotype that more closely resembled those of nonoutbreak strains. The improved understanding of the microbiological characteristics and the corresponding genetic polymorphisms that associate with outbreaks have the potential to inform tuberculosis control. IMPORTANCE Tuberculosis (TB) killed 1.5 million people in 2020 and affects every country. The extent to which the natural genetic diversity of Mycobacterium tuberculosis influences disease manifestation at both the individual and epidemiological levels remains poorly understood. Insights into how pathogen polymorphisms affect patterns of TB have the potential to translate into clinical and public health practice. Two distinct lineage 3 strains isolated from local TB outbreaks, one of which (CH) was rapidly terminated and the other of which (Lro) persistently transmitted for over a decade, provided us with an opportunity to study these issues. We compared genome sequences, microbiological characteristics, and early immune responses that were evoked upon infection. Our results indicate that the natural lack of fadB4 in the Lro strain contributes to its unique features.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Disease Outbreaks , Macrophages/microbiology , Mycobacterium tuberculosis/genetics , Phenotype , Tuberculosis/microbiology , United Kingdom/epidemiology , Bacterial Proteins/metabolism
4.
Lancet Microbe ; 2(12): e695-e703, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34901898

ABSTRACT

BACKGROUND: Hypervirulent Klebsiella pneumoniae (hvKp) strains of capsule type K1 and K2 cause invasive infections associated with hepatic abscesses, which can be difficult to treat and are frequently associated with relapsing infections. Other K pneumoniae strains (non-hvKp), including lineages that have acquired carbapenem resistance, do not manifest this pathology. In this work we aimed to test the hypothesis that within-macrophage replication is a key mechanism underpinning abscess formation in hvKp infections. METHODS: In this exploratory investigation, to study the pathophysiology of abscess formation, mice were intravenously infected with 106 colony forming units (CFU) of either hvKp isolates (six strains) or non-hvKp isolates (seven strains). Intracellular bacterial replication and neutrophil influx in liver and spleen was quantified by fluorescence microscopy of sliced cryopreserved organs of mice collected 30 min, 6 h, and 24 h after infection with the aim to provide data of bacterial association to Kupffer cells in the liver and to the different tissue macrophages in the spleen. Microbiological and microscopy analysis of an ex-vivo model of pig liver and spleen infection were used to confirm within-macrophage replication. Pig organs were perfused with heparinised, autologous pig's blood and injected with 6·5 × 107 CFU of hvKp K2 sequence type 25 strain GMR151. Blood and tissue biopsies collected before infection and 30 min, 1 h, 2 h, 3 h, 4 h, and 5 h after infection were used to measure bacterial counts and to identify the subcellular localisation of bacteria by immunohistochemistry analysis. FINDINGS: We show that hvKp resisted phagocyte-mediated clearance and replicated in mouse liver macrophages to form clusters 6 h after infection, with a mean of 7·0 bacteria per Kupffer cell (SD 6·2); however, non-hvKp were efficiently cleared (mean 1·5 bacteria per cell [SD 1·1]). HvKp infection promoted neutrophil recruitment to sites of infection, which in the liver resulted in histopathological signs of abscess formation as early as 24 h post-infection. Experiments in pig organs which share a high functional and anatomical resemblance to human organs, provided strong evidence for the propensity of hvKp to replicate within the hepatic macrophages. INTERPRETATION: These findings show subversion of innate immune processes in the liver by K pneumoniae and resistance to Kupffer cell mediated clearance as an explanation for the propensity of hvKp strains to cause hepatic abscesses. FUNDING: University of Oxford and a Royal Society Wolfson grant funded biosafety facility.


Subject(s)
Klebsiella Infections , Liver Abscess , Animals , Klebsiella Infections/diagnosis , Klebsiella pneumoniae , Liver Abscess/microbiology , Macrophages , Mice , Perfusion , Swine , Virulence
5.
Front Microbiol ; 12: 607512, 2021.
Article in English | MEDLINE | ID: mdl-33584611

ABSTRACT

The accessory genomes of many pathogenic bacteria include ABC transporters that scavenge metal by siderophore uptake and ABC transporters that contribute to antimicrobial resistance by multidrug efflux. There are mechanistic and recently recognized structural similarities between siderophore importer proteins and efflux pumps. Here we investigated the influence of siderophore importer YbtPQ on antimicrobial resistance of Klebsiella pneumoniae. YbtPQ is encoded in the yersiniabactin cluster in a prevalent mobile genetic element ICEKp, and is also common in pathogenicity islands of Escherichia coli and Yersinia species, where yersiniabactin enhances virulence. Deletion of ICEKp increased the susceptibility of K. pneumoniae to all antimicrobials tested. The mechanism was dependent on the yersiniabactin importer YbtPQ and may involve antimicrobial efflux, since it was affected by the inhibitor reserpine. The element ICEKp is naturally highly mobile, indeed the accessory genome of K. pneumoniae is recognized as a reservoir of genes for the emergence of hospital outbreak strains and for transfer to other Gram-negative pathogens. Introduction of ICEKp, or a plasmid encoding YbtPQ, to E. coli decreased its susceptibility to a broad range of antimicrobials. Thus a confirmed siderophore importer, on a rapidly evolving and highly mobile element capable of interspecies transfer, may have a secondary function exporting antimicrobials.

6.
Sci Rep ; 9(1): 13892, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31554924

ABSTRACT

Klebsiella pneumoniae is a human pathogen, prominent in antimicrobial-resistant and nosocomial infection. The integrative and conjugative element ICEKp1 is present in a third of clinical isolates and more prevalent in invasive disease; it provides genetic diversity and enables the spread of virulence-associated genes. We report a second integrative conjugative element that can co-occur with ICEKp1 in K. pneumoniae. This element, ICEKp2, is similar to the Pseudomonas aeruginosa pathogenicity island PAPI. We identified ICEKp2 in K. pneumoniae sequence types ST11, ST258 and ST512, which are associated with carbapenem-resistant outbreaks in China and the US, including isolates with and without ICEKp1. ICEKp2 was competent for excision, but self-mobilisation to recipient Escherichia coli was not detected. In an isolate with both elements, ICEKp2 positively influenced the efficiency of plasmid mobilisation driven by ICEKp1. We propose a putative mechanism, in which a Mob2 ATPase of ICEKp2 may contribute to the ICEKp1 conjugation machinery. Supporting this mechanism, mob2, but not a variant with mutations in the ATPase motif, restored transfer efficiency to an ICEKp2 knockout. This is the first demonstration of the interaction between integrative and conjugative genetic elements in a single Gram-negative bacterium with implications for understanding evolution by horizontal gene transfer.


Subject(s)
Bacterial Proteins/genetics , Klebsiella pneumoniae/genetics , China , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Gene Transfer, Horizontal/genetics , Humans , Klebsiella Infections/microbiology , Mutation/genetics , Plasmids/genetics , Pseudomonas aeruginosa/genetics , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...